bm42400
contestada

Find the 5th term of the expansion of (x + y)^9
a.
81x4y5
c.
81x5y4
b.
126x4y5
d.
126x5y4


Please select the best answer from the choices provided

A
B
C
D

Respuesta :

Answer:

Option d. [tex]126x^5y^4[/tex].

Step-by-step explanation:

Based on binomial theorem we write down the binomial formula for all positive integer values of n as-

[tex](a+b)^{n}=a^{n}+na^{n-1}b+\frac{n(n-1)}{2!}a^{n-2}b^{2}+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}.....b^{n}[/tex]

Now we calculate the 5th term of [tex](x+y)^{n}[/tex]

From the given formula the fifth term of the binomial will be

= [tex]\frac{n(n-1)(n-2)(n-3)}{4!}x^{n-4}y^{4}[/tex]

Here the value of n = 9

Then the fifth term will be[tex]=\frac{9(9-1)(9-2)(9-3)}{4!}x^{9-4}y^{4}[/tex]


[tex]=\frac{9(8)(7)(6)}{4!}x^{5}y^{4}=\frac{9\times 8\times 7\times 6}{4\times 3\times 2\times 1}x^5y^4[/tex]

[tex]=9\times 2\times 7x^5y^4=126x^5y^4[/tex]