Answer:
1. y=(x+3)^3. Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1). Zeros: x=2 multiplicity 2; x=1 multiplicity 1.
3. y=(2x+3)(x-1)^2. Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Step-by-step explanation:
1. y=(x+3)^3
[tex]y=0\\ (x+3)^3=0\\ \sqrt[3]{(x+3)^3}=\sqrt[3]{0}\\ x+3=0\\ x+3-3=0-3\\ x=-3[/tex]
Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1)
[tex]y=0\\ (x-2)^2(x-1)=0\\ \left \{ {{(x-2)^2=0} \atop {x-1=0}} \right\\ \left \{ {{\sqrt{(x-2)^2} =\sqrt{0} } \atop {x-1+1=0+1}} \right\\ \left \{ {{x-2=0} \atop {x=1}} \right\\ \left \{ {{x-2+2=0+2} \atop {x=1}} \right\\ \left \{ {{x=2} \atop {x=1}} \right.[/tex]
Zeros: x=2 multiplicity 2; x=1 multiplicity 1
3. y=(2x+3)(x-1)^2
[tex]y=0\\ (2x+3)(x-1)^2=0\\ \left \{ {{2x+3=0} \atop {(x-1)^2=0}} \right\\ \left \{ {{2x+3-3=0-3} \atop {\sqrt{(x-1)^2} =\sqrt{0} }} \right\\ \left \{ {{2x=-3} \atop {x-1=0}} \right\\ \left \{ {{\frac{2x}{2} =\frac{-3}{2} } \atop {x-1+1=0+1}} \right\\ \left \{ {{x=-\frac{3}{2} } \atop {x=1}} \right.[/tex]
Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.