Write the equation of the circle with the given center and radius.

#1. Center: (0,2) ; radius: 5

#2. Center: (-4,-5) ; radius: square root ✔️2

#3. Center: (-1,3) ; radius: 8

#4. Center: (9,0) ; radius: ✔️3

Respuesta :

Step-by-step explanation:

The standard equation of a circle is [tex](x - h)^2 + (y - k)^2 = r^2[/tex]

Center = (h, k)

#1

Center = (0,2)

h = 0

k = 2

r = 5

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

[tex](x - 0)^2 + (y - 2)^2 = 5^2[/tex]

#2

Center = (-4,-5)

h = -4

k = -5

r = [tex]\sqrt{2}[/tex]

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

[tex](x - (-4))^2 + (y - (-5))^2 = \sqrt{2}^2[/tex]

[tex](x + 4))^2 + (y + 5))^2 = \sqrt{2}^2[/tex]

#3

Center =(-1,3)

h = -1

k = 3

r = 8

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

[tex](x - (-1))^2 + (y - 3)^2 = 8^2[/tex]

[tex](x + 1)^2 + (y - 3)^2 = 8^2[/tex]

#4

Center: (9,0)

h = 9

k = 0

r = [tex]\sqrt{3}[/tex]

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

[tex](x - 9)^2 + (y - 0)^2 = \sqrt{3}^2[/tex]