Factor the expression.

Answer:
5(5k²+6)(4k-3)
Step-by-step explanation:
100k³ - 75k² + 120k - 90
Take 5 common above:
= 5(20k³ - 15k² + 24k - 18) ------- eq1
First let simplify 20k³ - 15k² + 24k - 18
= (20k³ - 15k²) + (24k - 18) ---------eq2
Factor out 6 from 24k - 18 :
6(4k-3)
Factor out 5k² from (20k³ - 15k²):
5k²(4k -3)
eq2 becomes: = 6(4k-3) + 5k²(4k -3)
Factor out common term 4k-3
(6+ 5k²)(4k -3) or (5k²+6)(4k-3)
Thus eq1 becomes:
5(5k²+6)(4k -3)
Answer:
The correct answer is Option 1. 5(5k² + 6)(4k - 3)
Step-by-step explanation:
The given expression is,
100k³ - 75k² + 120k - 90
Factor the expression
100k³ - 75k² + 120k - 90
= 5[20k³ - 15k² + 24k - 18] [Taking 5 as common factor]
= 5[ 5k²(4k - 3) + 6(4k - 3) ]
= 5[(4k - 3)(5k² + 6)]
= 5[(5k² + 6) (4k - 3)]
Therefore the correct answer is Option 1. 5(5k² + 6)(4k - 3)