Respuesta :
Answer:
The simplified form of given expression is -27+i.
Step-by-step explanation:
The given expression is
[tex]2(i-14)-i(i+1)[/tex]
Use distribution property, to simplify the given expression,
[tex]2(i-14)-i(i+1)=2(i)-2(14)-i(i)-i(1)[/tex]
[tex]2(i-14)-i(i+1)=2i-28-i^2-i[/tex]
[tex]2(i-14)-i(i+1)=2i-28-(-1)-i[/tex] [tex][\because i^2=-1][/tex]
Combine like terms,
[tex]2(i-14)-i(i+1)=(-28+1)+(2i-i)[/tex]
[tex]2(i-14)-i(i+1)=-27+i[/tex]
Therefore the simplified form of given expression is -27+i.
Answer:
i-27
Step-by-step explanation:
We have given an expression .
2(i-14)-i(i+1)
We have to simplify it.
Distribute 2 over first parentheses and -i over second parentheses
2(i)+2(-14)+(-i)(i)+(-i)(1)
2i-28-i²-i
Since, we know that
i² = -1
2i-28-(-1)-i
2i-28+1-i
Add like terms
(2-1)i+(-28+1)
(1)i+(-27)
i-27 which is the answer.