Respuesta :

Answer:

[tex]\tan \frac{13\pi}{12}=0.27[/tex]

Step-by-step explanation:

To find the exact value of [tex]\tan (195^{\circ})[/tex]

[tex]\tan (195^{\circ})[/tex] can be written in radian as [tex]\tan(\frac{13\pi}{12})[/tex]

Also,

[tex]\tan(\frac{13\pi}{12})=\tan(\frac{9\pi}{12}+\frac{4\pi}{12})[/tex]

Using formula for [tex]\tan A+ \tan B[/tex]

[tex]\tan A +\tan B =\frac{\tan A+\tan B}{1-\tan A\tan B}[/tex]

Here, [tex]A=\frac{3\pi}{4} \ and \ B=\frac{\pi}{4}[/tex]

Substitute,we have,

[tex]\tan \frac{13\pi}{12}=\dfrac{\tan \frac{3\pi}{4} +\tan  \frac{\pi}{4}}{1-\tan  \frac{3\pi}{4}\tan  \frac{\pi}{4}}[/tex]

We know, [tex]\tan \frac{3\pi}{4}=-1 \ and\ \tan \frac{\pi}{4}=\sqrt{3}[/tex],

Putting, we get,

[tex]\tan \frac{13\pi}{12}=\dfrac{-1+\sqrt{3}}{1-(-1)\cdot \sqrt{3}}[/tex]

Solving, we get,

[tex]\tan \frac{13\pi}{12}=\dfrac{-1+\sqrt{3}}{1+\sqrt{3}}[/tex]

Rationalize by multiply and divide by  [tex]1+\sqrt{3}[/tex] , we have,

[tex]\tan \frac{13\pi}{12}=\frac{-1+\sqrt{3}}{1+\sqrt{3}}\times\frac{1+\sqrt{3} }{1+\sqrt{3}}[/tex]

Simplify, we get,

[tex]\tan \frac{13\pi}{12}=2-\sqrt{3}[/tex]

Using , [tex]\sqrt{3}=1.73\\[/tex] we get,

[tex]\tan \frac{13\pi}{12}=0.27[/tex]

Answer:

2-√3

Step-by-step explanation:

A got it right on edg