Help please!!!!!!!!!!!!!!!!!!!!!!!!!




Given ​ f(x)=x2−12x+46​.




Enter the quadratic function in vertex form











What is the axis of symmetry for f(x)=3^2 + 9x + 15?


x = −3/2


x = -2


x = −2/3

Respuesta :

gmany

Answer:

[tex]\large\boxed{1.\ f(x)=(x-6)^2+10}\\\\\boxed{2.\ x=-\dfrac{3}{2}}[/tex]

Step-by-step explanation:

The quadratic function:

[tex]f(x)=ax^2+bx+c[/tex]

1.

The vertex form of a quadratic function:

[tex]f(x)=a(x-h)^2+k[/tex]

[tex]h=\dfrac{-b}{2a}\\\\k=f(h)[/tex]

We have

[tex]f(x)=x^2-12x+46\\\\a=1,\ b=-12,\ c=46[/tex]

Substitute:

[tex]h=\dfrac{-(-12)}{2(1)}=\dfrac{12}{2}=6\\\\k=f(6)=6^2-12(6)+46=36-72+46=10\\\\f(x)=1(x-6)^2+10[/tex]

2.

The equation of an axis of symmetry:

[tex]x=\dfrac{-b}{2a}[/tex]

We have:

[tex]f(x)=3x^2+9x+15\\\\a=3,\ b=9,\ c=15[/tex]

Substitute:

[tex]x=\dfrac{-9}{2(3)}=-\dfrac{3}{2}[/tex]