Respuesta :

Answer:

338 (1 Year)

365.58 (3 Years)

427.68 (7 Years)

712.12 (20 Years)

Step-by-step explanation:

To find the compounded annual value, we use the formula:

[tex]A = P(1 + r/n)^{nt}[/tex]

Let's first take each variable and list them:

P = 325

r = 4% or 0.04

t = 1, 3, 7, 20

n = 1

Let's take each number of years one at a time.

[tex]A = P(1 + r/n)^{nt}[/tex]

After 1 Year

[tex]A = 325(1 + \dfrac{0.04}{1})^{1(1)}[/tex]

[tex]A = 325(1 + \frac{0.04}{1})^{1}[/tex]

[tex]A = 325(1 + 0.04)^{1}[/tex]

[tex]A = 325(1.04)^{1}[/tex]

[tex]A = 325(1.04)[/tex]

[tex]A = 338[/tex]

After 3 Years

[tex]A = 325(1 + \dfrac{0.04}{1})^{1(3)}[/tex]

[tex]A = 325(1 + \frac{0.04}{1})^{3}[/tex]

[tex]A = 325(1 + 0.04)^{3}[/tex]

[tex]A = 325(1.04)^{3}[/tex]

[tex]A = 325(1.1248)[/tex]

[tex]A = 365.58[/tex]

After 7 Years

[tex]A = 325(1 + \dfrac{0.04}{1})^{1(7)}[/tex]

[tex]A = 325(1 + \frac{0.04}{1})^{7}[/tex]

[tex]A = 325(1 + 0.04)^{7}[/tex]

[tex]A = 325(1.04)^{7}[/tex]

[tex]A = 325(1.3159)[/tex]

[tex]A = 427.68[/tex]

After 20 years

[tex]A = 325(1 + \dfrac{0.04}{1})^{1(20)}[/tex]

[tex]A = 325(1 + \frac{0.04}{1})^{20}[/tex]

[tex]A = 325(1 + 0.04)^{20}[/tex]

[tex]A = 325(1.04)^{20}[/tex]

[tex]A = 325(2.1911)[/tex]

[tex]A = 712.12[/tex]