Which choice is equivalent to the fraction below? (Hint: Rationalize the denominator and simplify.) I NEED HELP HELP PLEASE PLEASE HELP HELP PLEASE HELP ME PLEASE PLEASE HELP PLEASE PLEASE ASAP PLEASE PLEASE THANK

Which choice is equivalent to the fraction below Hint Rationalize the denominator and simplify I NEED HELP HELP PLEASE PLEASE HELP HELP PLEASE HELP ME PLEASE PL class=

Respuesta :

Answer:

A: [tex]\sqrt{x + 2} - \sqrt{x}[/tex]

^.^

- Amanda

Answer:

Option A.

Step-by-step explanation:

The given fraction [tex]\frac{2}{\sqrt{x}\sqrt{x+2}}[/tex] is to be simplified.

For the simplification of the given fraction we will rationalize the denominator. By multiplying [tex](\sqrt{x}\sqrt{x+2})[/tex] in numerator as well as denominator both, denominator can be rationalized.

[tex]\frac{2(\sqrt{x}-\sqrt{x+2})}{(\sqrt{x}+\sqrt{x+2})(\sqrt{x}-\sqrt{x+2})}[/tex]

= [tex]\frac{2(\sqrt{x}-\sqrt{x+2})}{(\sqrt{x})^{2}-(\sqrt{x+2})^{2} }[/tex]

[ Since ( a+b) (a-b) = a² - b² ]

[tex]\frac{2(\sqrt{x}-\sqrt{x+2)}}{x-(x+2)}=\frac{(2\sqrt{x}-\sqrt{x+2)}}{(-2)}[/tex]

= [tex]-(\sqrt{x}-\sqrt{x+2}=\sqrt{x+2}-\sqrt{x}[/tex]

Option A. is the answer.