PLEASE HELP
1) What is the minimum value for g(x)=x^2−10x+16? Enter your answer in the box.

2) What are the x-intercepts of the quadratic function? f(x)=x2−3x−10
Enter your answers in the boxes. __and__

3) Let ​ f(x)=x2+17x+72 ​ What are the zeros of the function?
​Enter your answers in the boxes. ​___and___

4) Let ​ f(x)=x2+6x+11 ​. What is the minimum value of the function?
Enter your answer in the box. ​___and___

Respuesta :

Answer:

Part 1) The minimum value is [tex](5,-9)[/tex]

Part 2) The x-intercepts are -2 and 5

Part 3) The zeros of the function are -9 and -8

Part 4) The minimum value is [tex](-3,2)[/tex]

Step-by-step explanation:

Part 1) we have

[tex]g(x)=x^{2}-10x+16[/tex]

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex

if a>0---> the the parabola open upward (vertex is a minimum)

If a<0---> the the parabola open downward (vertex is a maximum)

Convert to vertex form

[tex]g(x)-16=x^{2}-10x[/tex]

[tex]g(x)-16+25=x^{2}-10x+25[/tex]

[tex]g(x)+9=x^{2}-10x+25[/tex]

[tex]g(x)+9=(x-5)^{2}[/tex]

[tex]g(x)=(x-5)^{2}-9[/tex] ------> vertex form

The vertex is the point [tex](5,-9)[/tex]

the parabola open upward (vertex is a minimum)

Part 2) we have

[tex]f(x)=x^{2}-3x-10[/tex]

we know that

The x-intercepts are the values of x when the value of the function is equal to zero

so

equate the equation to zero

[tex]x^{2}-3x-10=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-3x-10=0[/tex]

so

[tex]a=1\\b=-3\\c=-10[/tex]

substitute in the formula

[tex]x=\frac{-(-3)(+/-)\sqrt{-3^{2}-4(1)(-10)}} {2(1)}[/tex]

[tex]x=\frac{3(+/-)\sqrt{49}} {2}[/tex]

[tex]x=\frac{3(+/-)7} {2}[/tex]

[tex]x=\frac{3(+)7} {2}=5[/tex]

[tex]x=\frac{3(-)7} {2}=-2[/tex]

Part 3) we have

[tex]f(x)=x^{2}+17x+72[/tex]

we know that

The zeros of the function are the values of x when the value of the function is equal to zero

so

equate the equation to zero

[tex]x^{2}+17x+72=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}+17x+72=0[/tex]

so

[tex]a=1\\b=17\\c=72[/tex]

substitute in the formula

[tex]x=\frac{-17(+/-)\sqrt{17^{2}-4(1)(72)}} {2(1)}[/tex]

[tex]x=\frac{-17(+/-)\sqrt{1}} {2}[/tex]

[tex]x=\frac{-17(+/-)1} {2}[/tex]

[tex]x=\frac{-17(+)1} {2}=-8[/tex]

[tex]x=\frac{-17(-)1} {2}=-9[/tex]

Part 4) we have

[tex]f(x)=x^{2}+6x+11[/tex]

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex

if a>0---> the the parabola open upward (vertex is a minimum)

If a<0---> the the parabola open downward (vertex is a maximum)

Convert to vertex form

[tex]f(x)-11=x^{2}+6x[/tex]

[tex]f(x)-11+9=x^{2}+6x+9[/tex]

[tex]f(x)-2=x^{2}+6x+9[/tex]

[tex]f(x)-2=(x+3)^{2}[/tex]

[tex]f(x)=(x+3)^{2}+2[/tex]

The vertex is the point [tex](-3,2)[/tex]

the parabola open upward (vertex is a minimum)

Answer:

-31

Step-by-step explanation: