Respuesta :

gmany

Answer:

[tex]\large\boxed{g\left(\dfrac{2}{3}\right)=-\dfrac{2}{9}}[/tex]

Step-by-step explanation:

[tex]g(x)=x^2-x=x(x-1)\\\\g\left(\dfrac{2}{3}\right)\to\text{put }\ x=\dfrac{2}{3}\ \text{to the eqation of the function:}\\\\g\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}\right)\left(\dfrac{2}{3}-1\right)=\left(\dfrac{2}{3}\right)\left(\dfrac{2}{3}-\dfrac{3}{3}\right)=\left(\dfrac{2}{3}\right)\left(-\dfrac{1}{3}\right)=-\dfrac{(2)(1)}{(3)(3)}=-\dfrac{2}{9}[/tex]

Answer:

-2/9

Step-by-step explanation:

g(x) = x^2 -x

Let x = 2/3

g(2/3) = (2/3) ^2 - 2/3

          = 4/9 - 2/3

We need a common denominator of 9

4/9 - 2/3*3/3

4/9 - 6/9

-2/9