Respuesta :

Answer:

[tex]y=3\cos(x)[/tex]

[tex]y=\sin(2x)+3[/tex]

[tex]y=\tan(x)+3[/tex]

Step-by-step explanation:

For [tex]y=cosx +3[/tex], when [tex]x=0[/tex], [tex]y=\cos(0)+3\Rightarrow y=1+3=4[/tex]

The graph of this function contains the point [tex](0,4)[/tex]

For [tex]y=3\cos(x)[/tex], when [tex]x=0[/tex], [tex]y=3\cos(0) \Rightarrow y=3(1)=3[/tex]

The graph of this function contains the point [tex](0,3)[/tex]

For [tex]y=\sin(2x)+3[/tex], when [tex]x=0[/tex],  [tex]y=\sin(2(0))+3=3[/tex]

The graph of this function contains the point [tex](0,3)[/tex]

For [tex]y=\tan(x)+3[/tex], when [tex]x=0[/tex],[tex]y=\tan(0)+3=0+3=3[/tex]

The graph of this function contains the point [tex](0,3)[/tex]

For [tex]y=\sin(3x+\frac{\pi}{2})+1[/tex], when [tex]x=0[/tex],  [tex]y=\sin(3(0)+\frac{\pi}{2})+1[/tex]

[tex]\Rightarrow y=\sin(0+\frac{\pi}{2})+1[/tex]

[tex]\Rightarrow y=\sin(\frac{\pi}{2})+1[/tex]

[tex]\Rightarrow y=1+1=2[/tex]

The graph of this function contains the point [tex](0,2)[/tex]