Please help........................

Answer:
The value of y = 2
Step-by-step explanation:
∵ BD bisects angle ABC
∴ m∠ABD = m∠CBD⇒ (1)
∵ m∠BAD = 90° , m∠BCD = 90°
∴ m∠BAD = m∠BCD ⇒ (2)
∵ BD is a common side in the two Δ ABD and CBD ⇒ (3)
From (1) , (2) and (3)
∴ The two Δ ABD and CBD are congruent
∴ AD = CD
∵ AD = 5x - y , CD = x + 13y
∴ 5x - y = x + 13y ⇒ collect like terms
∴ 5x - x = 13y + y
∴ 4x = 14y ⇒ (4)
∵ m∠ABD = m∠CBD
∵ m∠ABD = 2x + y , m∠CBD = 14 + y
∴ 2x + y = 14 + y ⇒ 2x + y - y = 14 ⇒ 2x = 14
∴ x = 7 ⇒ substitute the value of x in (4)
∴ 4(7) = 14y
∴ y = 28/14 = 2
Answer:
Step-by-step explanation:
[tex]\text{If}\ \overrightarrow{BD}\ \text{is the angle bisector of}\ \angle ABC,\ \text{then we have two equations:}\\\\(1)\qquad2x+y=14+y\\(2)\qquad5x-y=x+13y\\------------------\\\\(1)\\2x+y=14+y\qquad\text{subtract}\ y\ \text{from both sides}\\2x=14\qquad\text{divide both sides by 2}\\\boxed{x=7}\\\\\text{Put the value of x to (2):}\\\\5(7)-y=7+13y\\35-y=7+13y\qquad\text{subtract 35 from both sides}\\-y=-28+13y\qquad\text{subtract 13y from both sides}\\-14y=-28\qquad\text{divide both sides by (-14)}\\\boxed{y=2}[/tex]