contestada

The straight line with equation
[tex]y = 11x - 28[/tex]
is a tangent to the curve
[tex]y = {x}^{3} - a {x}^{2} + bx - 1[/tex]
at the point (3,5). Find A, the coefficient of
[tex] {x}^{2} [/tex]

Respuesta :

Answer:

[tex]a=3[/tex]

Step-by-step explanation:

The equation of the curve is

[tex]y=x^3-ax^2+bx-1[/tex].

The gradient function is given by

[tex]\frac{dy}{dx}=3x^2-2ax+b[/tex]

The gradient of this curve at the point (3,5) is equal to the gradient of the tangent [tex]y=11x-28[/tex] which is 11.

[tex]\Rightarrow 11=3(3)^2-2a(3)+b[/tex]

[tex]\Rightarrow 11=27-6a+b[/tex]

[tex]\Rightarrow b-6a=-16...(1)[/tex]

The given point, (3,5) also satisfies the equation of the curve.

[tex]\Rightarrow 3^3-a(3)^2+b(3)-1=5[/tex]

[tex]\Rightarrow 27-9a+3b-1=5[/tex]

[tex]\Rightarrow3b-9a=-21[/tex]

[tex]\Rightarrow b-3a=-7...(2)[/tex]

Equation (2) minus equation (1) gives

[tex]-3a+6a=-7+16[/tex]

[tex]3a=9[/tex]

This implies that;

[tex]a=3[/tex]