Express answer in exact form.
A segment of a circle has a 120 arc and a chord of 8√3 in. Find the area of the segment.

Please show work I am totally stuck on this.. Thank you (75 points)

Respuesta :

Answer:

[tex]=(\frac{64}{3}\pi-16\sqrt{3}) in^2[/tex]

Step-by-step explanation:

Area of segment equals area of sector minus area of isosceles triangle.

[tex]=\frac{\theta}{360}\times \pi r^2 -\frac{1}{2} r^2 \sin(\theta)[/tex]

Given; the length of chord, [tex]d=8\sqrt{3} in.[/tex]

and the angle of the sector, [tex]\theta=120\degree[/tex].

We can use the formula for calculating the length of a chord to find the radius of the circle.

[tex]d=2r\sin(\frac{\theta}{2})[/tex]

[tex]8\sqrt{3}=2r\sin(60\degree)[/tex]

[tex]8\sqrt{3}=2r(\frac{\sqrt{3}}{2})[/tex]

[tex]\Rightarrow r=8in.[/tex]

Area of segment[tex]=\frac{120}{360}\times \pi \times 8^2-\frac{1}{2}\times 8^2\sin(120\degree)[/tex]

[tex]=(\frac{64}{3}\pi-16\sqrt{3}) in^2[/tex]

A = { 64/3 π - 16 √ 3 } in^2

Step-by-step explanation: