Help on solving these special right triangle problems??
Look at picture
Thank you!!

Answer:
Figure 4 ⇒ x = [tex]\frac{10\sqrt{3}}{3}[/tex] = 5.774
y = [tex]\frac{5\sqrt{3}}{3}[/tex] = 2.887
Figure 5 ⇒ x = 7
y = [tex]\frac{7\sqrt{3} }{3}[/tex] = 4.041
Step-by-step explanation:
Figure 4:
∵ The Δ is right triangle
∴ Use trigonometry function
∵ 5/x = sin(60°)
∴ x = 5/sin(60°) = [tex]\frac{10\sqrt{3} }{3}[/tex] = 5.774
∵ 5/y = tan(60°)
∴ y = 5/tan(60°) = [tex]\frac{5\sqrt{3}}{3}[/tex] = 2.887
Figure 5:
∵ The Δ is right triangle
∴ Use trigonometry function
∵ [tex]\frac{x}{\frac{14\sqrt{3}}{3}}[/tex] = sin(60°)
∴ x = [tex]\frac{14\sqrt{3}}{3}[/tex]×sin(60°) = 7
∵ [tex]\frac{y}{\frac{14\sqrt{3}}{3}}[/tex] = cox(60°)
∴ y = [tex]\frac{14\sqrt{3}}{3}[/tex]×cos(60°)=[tex]\frac{7\sqrt{3}}{3}[/tex] = 4.041
A 30°- 60°- 90° triangle has corresponding sides of: b - b√3 - 2b
The sides are OPPOSITE of the angle (the side the angle is not touching)
4. Answer: [tex]\bold{x = 7,\quad y=\dfrac{7\sqrt3}{3}}[/tex]
Step-by-step explanation:
[tex]90^o: 2b = \dfrac{14\sqrt3}{3}\\\\\\30^o: b=y\\\\.\quad \dfrac{1}{2}\cdot \dfrac{14\sqrt3}{3}=y\\\\.\quad \dfrac{7\sqrt3}{3}=y\\\\\\60^o: b\sqrt3=x\\\\.\quad \bigg(\dfrac{7\sqrt3}{3}\bigg)\sqrt3=x\\\\.\quad \dfrac{7\cdot 3}{3}=x\\\\.\quad 7=x\\[/tex]
5. Answer: [tex]\bold{x=\dfrac{10\sqrt3}{3},\quad y=\dfrac{5\sqrt3}{3}}[/tex]
Step-by-step explanation:
[tex]60^o: b\sqrt3=5\\\\30^o:b=y\\\\.\qquad \dfrac{5}{\sqrt3}=y\\\\\\.\qquad \dfrac{5}{\sqrt3}\bigg(\dfrac{\sqrt3}{\sqrt3}\bigg)=y\\\\\\.\qquad \dfrac{5\sqrt3}{3}=y\\\\\\90^o: 2b=x\\\\\\.\qquad 2\bigg(\dfrac{5\sqrt3}{3}\bigg)=x\\\\\\.\qquad \dfrac{10\sqrt3}{3}=x[/tex]