Let $f(x) = 2x^2 + 3x - 9,$ $g(x) = 5x + 11,$ and $h(x) = -3x^2 + 1.$ Find $f(x) - g(x) + h(x).$

Let $f(x) = 4x - 7$, $g(x) = (x + 1)^2$, and $s(x) = f(x) + g(x)$. What is $s(3)$?

Let $f(x) = 3x + 2$ and $g(x) = x^2 - 5x - 1.$ Find $f(g(x)).$

Let $f(x) = 3(x - 6)^2 + 1$. What is the range of $f$? Express your answer with interval notation.

Respuesta :

QUESTION 1

Given that:

[tex]f(x)=2x^2+3x-9[/tex],

[tex]g(x)=5x+11[/tex],

and

[tex]h(x)=-3x^2+1[/tex]

Then;

[tex]f(x)-g(x)+h(x)=2x^2+3x-9-(5x+11)+(-3x^2+1)[/tex]

[tex]f(x)-g(x)+h(x)=2x^2+3x-9-5x-11-3x^2+1[/tex]

Group similar terms;

[tex]f(x)-g(x)+h(x)=2x^2-3x^2+3x-5x-11-9+1[/tex]

Simplify;

[tex]f(x)-g(x)+h(x)=-x^2-2x-19[/tex]

QUESTION 2

Given that;

[tex]f(x)=4x-7[/tex].

[tex]g(x)=(x+1)^2[/tex]

and

[tex]s(x)=f(x)+g(x)[/tex]

Substitute the functions;

[tex]s(x)=4x-7+(x+1)^2[/tex]

Substitute x=3

[tex]s(3)=4(3)-7+(3+1)^2[/tex]

[tex]s(3)=12-7+(4)^2[/tex]

[tex]s(3)=5+16[/tex]

[tex]s(3)=21[/tex]

QUESTION 3

Given:

[tex]f(x)=3x+2[/tex]

[tex]g(x)=x^2-5x-1[/tex]

[tex]f(g(x))=f(x^2-5x-1)[/tex]

This implies that;

[tex]f(g(x))=3(x^2-5x-1)+2[/tex]

Expand the parenthesis;

[tex]f(g(x))=3x^2-15x-3+2[/tex]

[tex]f(g(x))=3x^2-15x-1[/tex]

QUESTION 4

The given function is;

[tex]f(x)=3(x-6)^2+1[/tex]

Let

[tex]y=3(x-6)^2+1[/tex]

[tex]\Rightarrow y-1=3(x-6)^2[/tex]

[tex]\Rightarrow \frac{y-1}{3}=(x-6)^2[/tex]

[tex]\Rightarrow \sqrt{\frac{y-1}{3}}=x-6[/tex]

[tex]\Rightarrow x=6+\sqrt{\frac{y-1}{3}}[/tex]

The range is:

[tex]\frac{y-1}{3}\ge0[/tex]

[tex]y-1\ge0[/tex]

[tex]y\ge1[/tex]

The interval notation is;

[tex][1,+\infty)[/tex]