Answer:
52 mL
Explanation:
Since the pressure of the gas remains constant, we can use the following gas law:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
where:
[tex]V_1 = 61.3 mL=0.0613 L=0.0613 dm^3 = 6.13\cdot 10^{-5} m^3[/tex] is the initial volume
[tex]V_2 = ?[/tex] is the final volume
[tex]T_1 = 68^{\circ}C + 273=341 K[/tex] is the initial temperature
[tex]T_2 = 17^{\circ}C + 273=290 K[/tex] is the final temperature
Substituting numbers and re-arranging the equation, we find the final volume of the gas:
[tex]V_2=\frac{T_2}{T_1}V_1 = \frac{290 K}{341 K}(6.13\cdot 10^{-5} m^3)=5.21\cdot 10^{-5} m^3 = 52.1 mL[/tex]
So the correct answer is
1. 52 mL