Respuesta :
If the limand is [tex]\ln(5n)\ln(15n)[/tex], then the limit diverges. But if you mean [tex]\dfrac{\ln(5n)}{\ln(15n)}[/tex], we can do some manipulating to rewrite it as
[tex]\displaystyle\lim_{n\to\infty}\frac{\ln(5n)}{\ln(15n)}=\lim_{n\to\infty}\frac{\ln5+\ln n}{\ln15+\ln n}=\lim_{n\to\infty}\frac{\frac{\ln5}{\ln n}+1}{\frac{\ln15}{\ln n}+1}[/tex]
[tex]\ln n\to\infty[/tex] as [tex]n\to\infty[/tex], so the fractional terms vanish and you're left with 1.
The limit will be "1". A complete solution is provided below.
According to the question,
By using the L'Hopital's rule, we get
→ [tex]\lim_{x \to \infty} {\frac{ln(5n)}{ln(15n)} } = \lim_{x \to \infty} {\frac{(\frac{1}{5n} )(5)}{(\frac{1}{15n} )(15)} }[/tex]
→ [tex]= \lim_{x \to \infty} {\frac{(\frac{1}{n} )}{(\frac{1}{n} )} }[/tex]
→ [tex]= \lim_{x \to \infty} 1[/tex]
→ [tex]= 1[/tex]
Thus the above answer is correct.
Learn more about Limits here:
https://brainly.com/question/2264931
