Respuesta :

Answer: 12 unit.    

Step-by-step explanation:

Given : In triangle ABC,

m∠NMO=90°, MN=MO, BK⊥AC, NO∥AC, M∈AC,  BK=10, AC=30,

We have to find : NO

Since, NO∥AC,

By the alternative interior angle theorem,

[tex]\angle BNO\cong \angle BAC[/tex]

[tex]\angle BON\cong \angle BCA[/tex]

Also,

[tex]\angle NBO\cong \angle ABC[/tex]

Thus, by AAA similarity postulate,

[tex]\triangle NBO\cong \triangle ABC[/tex]

Let S ∈ NO such that BS ⊥ NO,

By the property of similar triangles,

[tex]\frac{BS}{BK}=\frac{NO}{AC}[/tex]

[tex]\implies \frac{BK-SK}{BK}=\frac{NO}{AC}[/tex]   -------- (1),

Now, m∠NMO=90° and MN=MO,

Let J ∈ NO, such that MJ⊥NO

⇒ Triangle NMO is a isosceles triangle,

⇒ ∠MNJ = 45°,

[tex]\implies tan 45^{\circ} = \frac{MJ}{NJ}[/tex]

[tex]\implies MJ = NJ = SK[/tex]

[tex]\implies NO = 2 SK[/tex] -------(2)

From equation (1),

[tex]\implies \frac{BK-SK}{BK}=\frac{2 SK}{AC}[/tex]

Since, BK=10, AC=30

[tex]\implies \frac{10-SK}{10}=\frac{2 SK}{30}[/tex]

[tex]\implies 300 - 30 SK = 20 SK \implies 50 SK = 300\implies SK = 6[/tex]

From equation (2),

NO = 2 × 6 = 12 unit.

Ver imagen parmesanchilliwack