The function f(x) = –2(x – 10)(x – 200) represents a company's monthly profit as a function of the number of items sold, x. What is the maximum monthly profit?

Respuesta :

what you do first is you times the F which will equal -2 which will give you an answer then you subtract that answer by 10 * by 200 than you have your answer

Answer:

The maximum monthly profit is 18050.

Step-by-step explanation:

The given function is

[tex]f(x)=-2(x-10)(x-200)[/tex]

[tex]f(x)=(-2x+20)(x-200)[/tex]

[tex]f(x)=-2x(x-200)+20(x-200)[/tex]

[tex]f(x)=-2x^2+400x+20x-4000[/tex]

[tex]f(x)=-2x^2+420x-4000[/tex]              .... (1)

The vertex of a quadratic function  

[tex]g(x)=ax^2+bx+c[/tex]          ..... (2)

is defend as

[tex](\frac{-b}{2a},f(\frac{-b}{2a}))[/tex]

From (1) and (2) we get

[tex]a=-2,b=420,c=-4000[/tex]

[tex]\frac{-b}{2a}=\frac{-420}{2(-2)}=105[/tex]

Put x=105 in the given function.

[tex]f(105)=-2(105-10)(105-200)[/tex]

[tex]f(105)=-2(95)(-95)[/tex]

[tex]f(105)=18050[/tex]

Therefore the maximum monthly profit is 18050.