Respuesta :

Answer:

Option A.

[tex]x = \frac{\pi}{4} +2k\pi[/tex] and [tex]x = 7\frac{\pi}{4} +2k\pi[/tex]

Step-by-step explanation:

We have the following expression:

[tex]secx(2cosx -\sqrt{2}) = 0[/tex]

For this equation to fulfill any of the two terms, or both, they must be zero:

That is to say:

[tex]secx = 0[/tex]  or  [tex](2cosx -\sqrt{2}) = 0[/tex]

We know that [tex]secx = \frac{1}{cosx}[/tex] is different from 0 for all x.

Then we only have one option left.

[tex](2cosx -\sqrt{2}) = 0[/tex]

We clear x from the equation:

[tex]2cosx = \sqrt{2}[/tex]

[tex]cosx = \frac{\sqrt{2}}{2}[/tex]

[tex]x = acos(\frac{\sqrt{2}}{2})[/tex]

[tex]x = \frac{\pi}{4} +2k\pi[/tex] and [tex]x = 7\frac{\pi}{4} +2k\pi[/tex]

where k is an integer