The four diagonals of a cube are drawn to create 6 square pyramids with the same base and height. The volume of the cube is (b)(b)(b). The height of each pyramid is h. Therefore, the volume of one pyramid must equal one-sixth the volume of the cube, or

Respuesta :

Answer:

A

Step-by-step explanation:

Ver imagen HoneyBB

The volume of a shape is the amount of space in it

The volume of the pyramid is: (a) [tex]\mathbf{V_p =\frac 16 (b)(b)(2h)}[/tex] or [tex]\mathbf{V_p =\frac 13 Bh}[/tex]

The volume of the cube is given as:

[tex]\mathbf{V_c = (b)(b)(b)}[/tex]

Where:

[tex]\mathbf{b =2h}[/tex]

So, we have:

[tex]\mathbf{V_c = (b)(b)(2h)}[/tex]

The volume of the pyramid is:

[tex]\mathbf{V_p = \frac{1}{6}V_c}[/tex]

This gives

[tex]\mathbf{V_p =\frac 16 (b)(b)(2h)}[/tex]

Divide 6 and 2 by 2

[tex]\mathbf{V_p =\frac 13 (b)(b)(h)}[/tex]

The base area of the cube is:

[tex]\mathbf{B = (b)(b)}[/tex]

So, we have:

[tex]\mathbf{V_p =\frac 13 Bh}[/tex]

Hence, the volume of the pyramid is:

(a) [tex]\mathbf{V_p =\frac 16 (b)(b)(2h)}[/tex] or [tex]\mathbf{V_p =\frac 13 Bh}[/tex]

Read more about volumes of pyramid at:

https://brainly.com/question/16273581