Respuesta :

Answer:

Option (a) is correct.

[tex]\frac{f(x)}{g(x)}=\sqrt{x+1}[/tex]

Step-by-step explanation:

Given : [tex]f(x)=\sqrt{x^2-1}[/tex] and [tex]g(x)=\sqrt{x-1}[/tex]

We have to find the value of [tex](\frac{f}{g})(x)[/tex]

Consider [tex](\frac{f}{g})(x)[/tex]

It is same as [tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]

Substitute the value of f(x) and g(x) , we have,

[tex]\frac{f(x)}{g(x)}=\frac{\sqrt{x^2-1}}{\sqrt{x-1}}[/tex]

Combining same powers , [tex]\quad \frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}[/tex] , We have,

[tex]=\sqrt{\frac{x^2-1}{x-1}}[/tex]

Factorize numerator as , [tex]x^2-1:\quad \left(x+1\right)\left(x-1\right)[/tex]

We have , [tex]=\frac{\left(x+1\right)\left(x-1\right)}{x-1}[/tex]

Cancel out (x-1) , we get, (x + 1)

[tex]\frac{f(x)}{g(x)}=\sqrt{x+1}[/tex]

Thus, Option (a) is correct.

Answer:

Choice a is correct answer.

Step-by-step explanation:

We have given two function.

f(x) = √x²-1

g(x) = √x-1

We have to find the quotient of given functions.

(f/g)(x) = ?

The formula to find quotient of two function:

(f/g)(x) = f(x) / g(x)

Putting given values in above formula, we have

(f/g)(x) = √x²-1 / √x-1

(f/g)(x) = √(x-1)(x+1) / √x-1

(f/g)(x) = √x-1√x+1 / √x-1

(f/g)(x) =  √x+1 which is the answer.