Calculate the percent ionization of formic acid solutions having the following concentrations.a) 1.20Mb)0.450Mc)0.130Md)5.10 x 10^-2

Respuesta :

a). 1.22%

b). 2%

c). 3.72%

d). 5.94%

Further explanation

Given:

Ka for formic acid, HCOOH, is [tex]1.80 \times 10^{-4}[/tex]

Question:

Calculate the percent ionization (α) of formic acid solutions having the following concentrations (M).

The Process:

Remember that,

[tex]\boxed{ \ [H^+] = \alpha M \ }[/tex] and [tex]\boxed{ \ [H^+] = \sqrt{K_a M} \ }[/tex]

The two equations are rearranged to connect α, Ka, and M directly.

[tex]\boxed{ \ \alpha M = \sqrt{K_a M} \ }[/tex]

[tex]\boxed{ \ (\alpha M)^2 = (\sqrt{K_a M})^2 \ }[/tex]

[tex]\boxed{ \ \alpha^2 M^2 = K_a M \ }[/tex]

[tex]\boxed{ \ \alpha^2 = \frac{K_a M}{M^2} \ }[/tex]

[tex]\boxed{\boxed{ \ \alpha = \sqrt{\frac{K_a}{M}} \ }}[/tex]

Let us calculate the percent ionization from each concentration below.

a). 1.20 M

[tex]\boxed{ \ \alpha = \sqrt{\frac{1.80 \times 10^{-4}}{1.20}} \ }[/tex]

[tex]\alpha \approx 0.0122[/tex]

Thus, the percent of ionization for 1.20 M HCOOH solution is 1.22%.

_ _ _ _ _ _ _

b). 0.450 M

[tex]\boxed{ \ \alpha = \sqrt{\frac{1.80 \times 10^{-4}}{0.450}} \ }[/tex]

[tex]\alpha \approx 0.02[/tex]

Thus, the percent of ionization for 0.450 M HCOOH solution is 2%.

_ _ _ _ _ _ _

c). 0.130 M

[tex]\boxed{ \ \alpha = \sqrt{\frac{1.80 \times 10^{-4}}{0.130}} \ }[/tex]

[tex]\alpha \approx 0.0372[/tex]

Thus, the percent of ionization for 0.130 M HCOOH solution is 3.72%

_ _ _ _ _ _ _

d). 5.10 x 10⁻² M

[tex]\boxed{ \ \alpha = \sqrt{\frac{1.80 \times 10^{-4}}{5.10 \times 10^{-2}}} \ }[/tex]

[tex]\alpha \approx 0.0594[/tex]

Thus, the percent of ionization for 5.10 x 10⁻² M HCOOH solution is 5.94%.

_ _ _ _ _ _ _ _ _ _

Notes

Just a reminder, Ka and α are characteristic of weak acid solutions.

Learn more

  1. About electrolyte and nonelectrolyte solutions https://brainly.com/question/5404753
  2. What is the concentration of a solution formed by diluting 25.0 ml of a 3.2 M NaCl solution to 135.0 ml?  https://brainly.com/question/12452615
  3. What is the molarity of the Ba(OH)₂ solution? (neutralization) https://brainly.com/question/7882345  

The percent ionization of formic acid solutions having the concentrations of 1.20, 0.450, 0.130, and 5.10x10⁻² M is 1.22, 1.98, 3.61, and 5.69%, respectively.

The reaction of dissociation of formic acid is the following.

CHOOH + H₂O ⇄ CHOO⁻ + H₃O⁺

In the equilibrium we have:

CHOOH + H₂O ⇄ CHOO⁻ + H₃O⁺   (1)

Ci - x                           x             x      

[tex] K_{c} = \frac{[CHOO^{-}][H_{3}O^{+}]}{[CHOOH]} = \frac{x*x}{(C_{i} - x)} [/tex]   (2)            

Where:

Kc: is the equilibrium constant of formic acid = 1.8x10⁻⁴

Ci: is the initial concentration of formic acid

The percent ionization of formic acid can be calculated with the following equation:

[tex] \%_{I} = \frac{[H_{3}O^{+}]}{C_{i}} \times 100 [/tex]   (3)

With the above information, we can find the percent ionization of formic acid of each different concentration.

a) Ci = 1.20 M

We can find the H₃O⁺ concentration with equation (2)

[tex] 1.8 \cdot 10^{-4} = \frac{x^{2}}{(C_{i} - x)} [/tex]    

[tex] 1.8 \cdot 10^{-4}(1.20 - x) - x^{2} = 0 [/tex]

After solving the above quadratic equation for x, we have:

[tex] x_{1} = 0.0146 M = [H_{3}O^{+}] [/tex]

[tex] x_{2} = -0.0146 M = [H_{3}O^{+}] [/tex]

Taking the positive value (x₁) we can find the percent ionization (eq 3)

[tex] \%_{I} = \frac{[H_{3}O^{+}]}{C_{i}} \times 100 = \frac{0.0146}{1.20} \times 100 = 1.22 \% [/tex]  

Hence, the percent ionization of formic acid is 1.22% when the initial concentration is 1.20 M.

b) Ci = 0.450 M  

From equation (2) we have:

[tex] 1.8 \cdot 10^{-4}(0.450 - x) - x^{2} = 0 [/tex]  

After solving the above quadratic equation for x, we have:

[tex] x_{1} = 0.0089 M = [H_{3}O^{+}] [/tex]

[tex] x_{2} = -0.0090 M = [H_{3}O^{+}] [/tex]

With the positive value we can find the percent ionization (eq 3)

[tex] \%_{I} = \frac{0.0089}{0.450} \times 100 = 1.98 \% [/tex]  

Therefore, the percent ionization of formic acid is 1.98% when the initial concentration is 0.450 M.

c) Ci = 0.130 M  

From eq (2) we have:      

[tex] 1.8 \cdot 10^{-4}(0.130 - x) - x^{2} = 0 [/tex]

After solving the above quadratic equation for x:

[tex] x_{1} = 0.0047 M = [H_{3}O^{+}] [/tex]  

[tex] x_{2} = -0.0049 M = [H_{3}O^{+}] [/tex]

The percent ionization is (eq 3):

[tex] \%_{I} = \frac{0.0047}{0.130} \times 100 = 3.61 \% [/tex]  

Then, the percent ionization of formic acid is 3.61% when the initial concentration is 0.130 M.  

d) Ci = 5.10x10⁻² M  

The H₃O⁺ concentration is:      

[tex] 1.8 \cdot 10^{-4}(5.10 \cdot 10^{-2} - x) - x^{2} = 0 [/tex]

[tex] x_{1} = 0.0029 M = [H_{3}O^{+}] [/tex]  

[tex] x_{2} = -0.0031 M = [H_{3}O^{+}] [/tex]

So, the percent ionization is (eq 3):

[tex] \%_{I} = \frac{0.0029}{5.10 \cdot 10^{-2}} \times 100 = 5.69 \% [/tex]  

The percent ionization of formic acid is 5.69% when the initial concentration is 5.10x10⁻² M.  

Therefore, the percent ionization of formic acid solutions for the concentrations 1.20, 0.450, 0.130, and 5.10x10⁻² M is 1.22, 1.98, 3.61, and 5.69%, respectively.

 

Read more here:

https://brainly.com/question/9173942?referrer=searchResults

I hope it helps you!    

Ver imagen whitneytr12