Answer:
Part a) The radius of cylinder a is [tex]r=1\ cm[/tex]
Part b) The radius of cylinder b is [tex]r=2\ cm[/tex]
Part c) The radius of cylinder c is [tex]r=3\ cm[/tex]
Step-by-step explanation:
we know that
The volume of a cylinder is equal to
[tex]V=\pi r^{2}h[/tex]
solve for r
[tex]r=\sqrt{\frac{V}{\pi h}}[/tex]
case a)
we have
[tex]V=2,826\ cm^{3}[/tex]
[tex]h=900\ cm[/tex]
substitute the values
[tex]r=\sqrt{\frac{2,826}{(3.14)(900)}}=1\ cm[/tex]
case b)
we have
[tex]V=2,826\ cm^{3}[/tex]
[tex]h=225\ cm[/tex]
substitute the values
[tex]r=\sqrt{\frac{2,826}{(3.14)(225)}}=2\ cm[/tex]
case c)
we have
[tex]V=2,826\ cm^{3}[/tex]
[tex]h=100\ cm[/tex]
substitute the values
[tex]r=\sqrt{\frac{2,826}{(3.14)(100)}}=3\ cm[/tex]