Estimate the limit.
Picture below

Answer:
Hence, the limit of the expression:
[tex]\lim_{x \to 3} \dfrac{x-3}{x^2-2x-3}[/tex] is:
[tex]\dfrac{1}{4}[/tex]
Step-by-step explanation:
We have to estimate the limit of:
[tex]\lim_{x \to 3} \dfrac{x-3}{x^2-2x-3}[/tex]
We can also represent the denominator of the function in the limit as:
[tex]x^2-2x-3=x^2-3x+x-3\\\\x^2-2x-3=x(x-3)+1(x-3)\\\\x^2-2x-3=(x+1)(x-3)[/tex]
Hence, we have to estimate the limit of:
[tex]\lim_{x \to 3} \dfrac{x-3}{(x+1)(x-3)}\\\\= \lim_{x \to 3}\dfrac{1}{x+1}\\ \\=\dfrac{1}{3+1}\\\\=\dfrac{1}{4}[/tex]
Hence, the limit of the expression:
[tex]\lim_{x \to 3} \dfrac{x-3}{x^2-2x-3}[/tex] is:
[tex]\dfrac{1}{4}[/tex]
Answer:
Choice C is correct answer.
Step-by-step explanation:
We have given expression.
[tex]\lim_{x \to \ 3} x-3/x^{2} -2x-3[/tex]
We have to find the limit of function.
Simplifying the denominator, we have
x²-2x-3
Factoring the above expression, we have
(x-3)(x+1)
[tex]\lim_{x \to \ 3} (x-3) / (x-3)(x+1)[/tex]
[tex]\lim_{x \to \ 3} 1/x+1[/tex]
1 / 3+1
1/4
0.25
hence, [tex]\lim_{x \to \ 3} x-3/x^{2} -2x-3[/tex] = 0.25