Respuesta :

Answer:

The correct option is B  x= 7 ±[tex]\sqrt{61}[/tex]÷ 6 .

Step-by-step explanation:

Given :  Quadratic equation [tex]3^{2}[/tex]-7x-1 = 0.

To find : Use the quadratic formula to find both solution to the quadratic equation.

Formula used : Quadratic formula a[tex]x^{2}[/tex] + bx + c =0 , where "a", "b", and "c" are just numbers  x= -b ±[tex]\sqrt{b^{2} -4ac}[/tex]÷ 2a.

Explanation : Compare the a[tex]x^{2}[/tex] + bx + c =0 by  [tex]3^{2}[/tex]-7x-1 = 0.

a = 3 , b = -7 , c = -1 .

Plugging the values a,b,c in formula.

    x= -(-7) ±[tex]\sqrt{(-7)^{2} -4*3*(-1)}[/tex]÷ 2*3.

   x= 7 ±[tex]\sqrt{49 +12}[/tex]÷ 6.

  x= 7 ±[tex]\sqrt{61}[/tex]÷ 6.

Therefore, The correct option is B , x= 7 ±[tex]\sqrt{61}[/tex]÷ 6.