Use the given facts about the functions to find the indicated limit.

Answer: Option b.
Step-by-step explanation:
1. You can rewrite it as following:
[tex]\lim_{x\to \ -6} 2[/tex]
This means that you must substitute x=-6 into the limit. There is not x, then the function is always equal to 2, no matter the value of x.
[tex]\lim_{x\to \ -6} 2=2[/tex]
[tex]\lim_{x\to \ -6} 1[/tex]
This means that you must substitute x=-6 into the limit. There is not x, then the function is always equal to 1, no matter the value of x.
[tex]\lim_{x\to \ -6} 1=1[/tex]
2. Then:
[tex]\lim_{x\to \ -6} (f/g)(x)=2/1=2[/tex]
3. The answer 2.
Answer:
b. 2
Step-by-step explanation:
Given that;
[tex]\lim_{x \to -6} f(x)=2[/tex] and [tex]\lim_{x \to -6} g(x)=1[/tex]
Use the properties of limits;
[tex] \lim_{x \to -6} (\frac{f}{g})(x)= \lim_{x \to -6} (\frac{f(x)}{g(x)})[/tex]
[tex]\lim_{x \to -6} (\frac{f}{g})(x)= (\frac{\lim_{x \to -6}f(x)}{\lim_{x \to -6}g(x)}) [/tex]
This implies that;
[tex]\lim_{x \to -6} (\frac{f}{g})(x)= \frac{2}{1}[/tex]
[tex]\lim_{x \to -6} (\frac{f}{g})(x)=2[/tex]