Help me with this one please

The answer is:
[tex]sin(F)=\frac{OppositeSide}{Hypotenuse}=\frac{55}{73}=0.75[/tex]
[tex]cos(F)=\frac{AdjacentSide}{Hypotenuse}=\frac{48}{73}=0.66\\\\tan(F)=\frac{OppositeSide}{AdjacentSide}=\frac{55}{48}=1.15[/tex]
Since we are working with a right triangle, we can use the Pythagorean Theorem to know the missing side size (Opposite Side).
Pythagorean Theorem formula:
[tex]c^{2}=a^{2} +b^{2}[/tex]
Where:
[tex]c=hypotenuse=73\\a=AdjacentSide=48\\b=OppositeSide[/tex]
So, the opposite side will be:
[tex]OppositeSide=\sqrt{c^{2}-a^{2}}=\sqrt{73^{2}-48^{2}}=\sqrt{5329-2304} \\OppositeSide=\sqrt{3025}=55[/tex]
Then:
[tex]sin(F)=\frac{OppositeSide}{Hypotenuse}=\frac{55}{73}=0.75[/tex]
[tex]cos(F)=\frac{AdjacentSide}{Hypotenuse}=\frac{48}{73}=0.66\\\\tan(F)=\frac{OppositeSide}{AdjacentSide}=\frac{55}{48}=1.15[/tex]
Have a nice day!
Answer:
Sin F = 0.7534
Cos F = 0.6575
Tan F= 1.145
Step-by-step explanation:
From the given figure we can see that,
triangle DEF is right angled triangle
Base = DF = 48
Hypotenuse = EF = 73
Height = ED
To find ED
We have ,
Hypotenuse² = Base² + Height²
EF² = DF² + ED²
ED² = EF² - DF² = 73² - 482
ED² = 3025
ED = √3025 = 55
To find Sin (F)
Sin ∅ =Opposite side /Hypotenuse
Sin F = ED/EF = 55/73 = 0.7534
To find Sin (F)
Cos ∅ =Adjacent side /Hypotenuse
Cos F =DF/EF = 48/73 = 0.6575
To find Sin (F)
Tan ∅ =Opposite side /Adjacent side
Tan F = ED/DF = 55/48 = 1.145