Respuesta :

Answer:

Part 1) [tex]m<C=98\°[/tex]

Part 2) [tex]m\ arc\ BD=98\°[/tex]

Part 3) [tex]m<E=140\°[/tex]

Part 4) [tex]m\ arc\ BF=140\°[/tex]

Part 5) [tex]m<G=122\°[/tex]

Part 6) [tex]m\ arc\ DF=122\°[/tex]

Step-by-step explanation:

we have

[tex]m\ arc\ BFD=262\°[/tex]

[tex]m\ arc\ BDF=220\°[/tex]

Part 1) Find m<C

we know that

[tex]m<C=m\ arc\ BD[/tex] -----> by central angle

[tex]m\ arc\ BD+m\ arc\ BFD=360\°[/tex] -----> complete circle

[tex]m\ arc\ BD=360\°-m\ arc\ BFD[/tex]

[tex]m\ arc\ BD=360\°-262\°=98\°[/tex]

so

[tex]m<C=98\°[/tex]

Part 2) Find the measure of arc BD

[tex]m\ arc\ BD=98\°[/tex] -----> see the procedure Part 1)

Part 3) Find m<E

we know that

[tex]m<E=m\ arc\ BF[/tex] -----> by central angle

[tex]m\ arc\ BF+m\ arc\ BDF=360\°[/tex] -----> complete circle

[tex]m\ arc\ BF=360\°-m\ arc\ BDF[/tex]

[tex]m\ arc\ BF=360\°-220\°=140\°[/tex]

so

[tex]m<E=140\°[/tex]

Part 4) Find the measure of arc BF

[tex]m\ arc\ BF=140\°[/tex] -----> see the procedure Part 3)

Part 5) Find m<G    

we know that

[tex]m<G=m\ arc\ DF[/tex] -----> by central angle

[tex]m\ arc\ BF+m\ arc\ BD+m\ arc\ DF=360\°[/tex] -----> complete circle

[tex]140\°+98\°+m\ arc\ DF=360\°[/tex]

[tex]m\ arc\ DF=360\°-(140\°+98\°)=122\°[/tex]

so

[tex]m<G=122\°[/tex]

Part 6) Find the measure of arc DF

[tex]m\ arc\ DF=122\°[/tex] ----> see the procedure Part 5)