Respuesta :

Answer:

The length of the rectangle is [tex]9\ cm[/tex]

Step-by-step explanation:

we know that

The area of rectangle is equal to

[tex]A=LW[/tex]

In this problem we have

[tex]A=27\ cm^{2}[/tex]

so

[tex]27=LW[/tex] ------> equation A

and

[tex]A=2w^{2}+3w[/tex]

so

[tex]27=2w^{2}+3w[/tex]

[tex]2w^{2}+3w-27=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2w^{2}+3w-27=0[/tex]

so

[tex]a=2\\b=3\\c=-27[/tex]

substitute in the formula

[tex]w=\frac{-3(+/-)\sqrt{3^{2}-4(2)(-27)}} {2(2)}[/tex]

[tex]w=\frac{-3(+/-)\sqrt{225}} {4}[/tex]

[tex]w=\frac{-3(+/-)15} {4}[/tex]

[tex]w=\frac{-3(+)15} {4}=3[/tex]

[tex]w=\frac{-3(-)15} {4}=-4.5[/tex]

The solution of the quadratic equation is

[tex]w= 3\ cm[/tex]

Find the value of L

[tex]27=L(3)[/tex]

[tex]L=27/3=9\ cm[/tex]