Current research indicates that the distribution of the life expectancies of a certain protozoan is normal with a mean of 48 days and a standard deviation of 10.2 days. find the probability that a simple random sample of 49 protozoa will have a mean life expectancy of 49 or more days.

Respuesta :

[tex]X[/tex] is the random variable for lifespan of a protozoan and [tex]X\sim\mathcal N(48,10.2^2)[/tex]. Let [tex]\bar X[/tex] be the mean of a sample from this distribution, so that [tex]\bar X\sim\mathcal N\left(48,\left(\dfrac{10.2}{\sqrt{49}}\right)^2\right)[/tex].

For the sake of clarity, I'm denoting a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] by [tex]\mathcal N(\mu,\sigma^2)[/tex].

We have

[tex]P(\bar X\ge49)=P\left(\dfrac{\bar X-48}{\frac{10.2}{\sqrt{49}}\ge\dfrac{49-48}{\frac{10.2}{\sqrt{49}}\right)\approx P(Z\ge0.6863)\approx0.2463[/tex]

(where [tex]Z[/tex] follows the standard normal distribution)