Respuesta :
A = sinx - sin3x,
B = -sin3x + sin5x
First A:
The average of x and 3x is 2x, and they (x and 3x, that is) are each a distance of x from this average. That's fancy talk for:
x = 2x-x,
3x = 2x+x.
So, A = sin(2x-x) - sin(2x+x)
Using angle sum formulas:
A = (sin2x cosx - cos2x sinx) - (sin2x cosx + cos2x sinx)
A = -2 cos2x sinx
Similarly,
B = -sin(4x-x) + sin(4x+x)
= -(sin4x cosx - cos4x sinx) + (sin4x cosx + cos4x sinx)
B = 2 cos4x sinx
Now,
sinx - 2sin3x + sin5x = A+B = -2 cos2x sinx + 2 cos4x sinx
= 2 sinx (cos4x - cos2x).
Answer:
Sinx-2sin3x+sin5x=2sinx(cos4x-cos2x)
Step-by-step explanation:
sinx - 2sin3x + sin5x = sinx - sin(3x) + sin(5x)- sin(3x)
= 2· cos[(x+3x)/2] · sin[(x-3x)/2] + 2·cos[(5x+3x)/2]· sin[(5x-3x)/2]
= 2· cos(2x) ·sin(-x) + 2· cos(4x) · sin(x)
= -2·cos(2x)·sinx + 2· cos(4x)·sinx
= 2·sinx · [ cos(4x)- cos(2x)]