Find the surface area of the right square pyramid. Round your answer to the nearest hundredth. A 117.66 yd^2 B. 123.21 yd^2 C. 145.75 yd^2 D. 182.04 yd ^2

Find the surface area of the right square pyramid Round your answer to the nearest hundredth A 11766 yd2 B 12321 yd2 C 14575 yd2 D 18204 yd 2 class=

Respuesta :

Answer: OPTION C

Step-by-step explanation:

Use the following formula:

[tex]SA=\frac{pl}{2}+B[/tex]

Where p is the perimeter of the base, l is the slant height and B is the area of the base.

The perimeter is:

[tex]p=4*s=4*5.3yd=21.2yd[/tex]

Where s is the side lenght

The slant height is given:

[tex]l=11.1yd[/tex]

The area of the base is:

[tex]B=s^2=(5.3yd)^2=28.09yd^2[/tex]

Where s is the side lenght

Substitute values. Then, the result is:

[tex]SA=\frac{(21.2yd)(11.1yd)}{2}+28.09yd^2)=145.75yd^2[/tex]

Answer:

The correct answer option is C. 145.75 yd^2.

Step-by-step explanation:

We are given a diagram of a right square pyramid with a slant height 11.1 yd, and base edge length 5.3 yd.

We know that the surface area of a right square pyramid is given by:

[tex]\frac{PI}{2} +B[/tex]

where P = perimeter of the base, I = slant height and B = base area.

Perimeter of base = [tex]4 \times 5.3[/tex] = 21.2 yd^2

Base Area = [tex]5.3^3[/tex] = 28.09 yd^2

Surface area of right square pyramid = [tex]\frac{21.2 \times 11.1 }{2} + 28.09[/tex] = 145.75 yd^2