Find the exact value of sine, cosine, and tangent of A and T for each triangle.

Answer:
See below
Step-by-step explanation:
7)
AT² = 11² + 4² = 121 + 16 = 137
AT = √137
sinA = DT/AT = 11/√137 = (11√137)/137
cosA = AD/AT = 4/√137 = (4√137)/137
tanA = DT/AD = 11/4
sinT = AD/AT = 4/√137 = (4√137)/137
cosT = DT/AT = 11/√137 = (11√137)/137
tanT = AD/DT = 4/11
9)
AT² = 8² + 3² = 64 + 9 = 73
AT = √73
sinA = LT/AT = 8/√73 = (8√73)/73
cosA = AL/AT = 3/√73 = (3√73)/73
tanA = LT/AL = 8/3
sinT = AL/AT = 3/√73 = (3√73)/73
cosT = LT/AT = 8/√73 = (8√73)/73
tanT = AL/LT = 3/8
11)
6² = 4² + RT²
36 = 16 + RT²
RT² = 20
RT =√20 = √(4× 5) = 2√5
sinA = RT/AT = (2√5)/6 = (√5)/3
cosA = AR/AT = 4/6 = 2/3
tanA = RT/AR = (2√5)/4 = (√5)/2
sinT = AR/AT = 4/6 = 2/3
cosT = RT/AT = (2√5)/6 = (√5)/3
tanT = AR/RT = 4/(2√5) = (2√5)/5