Respuesta :

Answer:  The correct options are

(B) [tex]x=\dfrac{11+\sqrt{61}}{2}.[/tex]

(D) [tex]x=\dfrac{11-\sqrt{61}}{2}.[/tex]

Step-by-step explanation:  We are given to select the values of x that are the roots of the following polynomial :

[tex]x^2-11x+15.[/tex]

The quadratic equation formed by the given polynomial will be

[tex]x^2-11x+15=0~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

we know that

the solution set of a quadratic equation [tex]ax^2+bx+c=0,~~a\neq 0[/tex] is given by

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}.[/tex]

From equation (i), we have

a = 1, b = -11  and  c = 15.

Therefore, the roots of equation (i) will be given by

[tex]x=\dfrac{-(-11)\pm\sqrt{(-11)^2-4\times1\times15}}{2\times1}\\\\\\\Rightarrow x=\dfrac{11\pm\sqrt{121-60}}{2}\\\\\\\Rightarrow x=\dfrac{11\pm\sqrt{61}}{2}.[/tex]

Thus, the roots of the given polynomial are

[tex]x=\dfrac{11+\sqrt{61}}{2},~~~~~x=\dfrac{11-\sqrt{61}}{2}.[/tex]

Options (B) and (D) are CORRECT.

Answer:

b and d

Step-by-step explanation: