Respuesta :

The length of UV is 6 in because it is parallel to WX.

Find the length of TV:

[tex]TV^{2} =\sqrt{TU^{2} +TV^{2}}[/tex]

[tex]TV^{2} =\sqrt{12^{2} +6^{2}}[/tex]

[tex]TV^{2} =\sqrt{144+36}[/tex]

[tex]TV^{2} =\sqrt{180}[/tex]

[tex]TV =6\sqrt{5} = 13.41640786[/tex]

The length of VX is 9 in because it is parallel to UW.

[tex]TX^{2} =\sqrt{TV^{2} +VX^{2}}[/tex]

[tex]TX^{2} =\sqrt{180 +9^{2}}[/tex]

[tex]TX^{2} =\sqrt{180 +81}[/tex]

[tex]TX^{2} =\sqrt{261}[/tex]

[tex]TX =16.15549442[/tex]

TX = 16.2 inches

Answer:

The value of TX is 15 in

Step-by-step explanation:

According to Pythagoren theorem

Hyp² = Base² + Perp²

Putting the values

Hyp² = 12² + 9²

Hyp²  = 144 + 81

Hyp² = 225

taking square root on both sides

Hyp = 15