Given a cone with a volume of 56.52 in^3 and height 7 in., find the base radius of the cone.Use 3.14 for pi. Round your answer to the tenths place. a. 2.1 in c. 4.9 in b. 2.8 in d. 4.3 in

Respuesta :

Answer:

B

Step-by-step explanation:

Volume of Cone formula is given by :  [tex]V=\frac{1}{3}\pi r^2 h[/tex]

Given V = 56.52 and h = 7, we plug them in and solve for r:

[tex]V=\frac{1}{3}\pi r^2 h\\56.52=\frac{1}{3}(3.14) r^2 (7)\\56.52=7.33r^2\\\frac{56.52}{7.33}=r^2\\7.71=r^2\\r=\sqrt{7.71}\\ r=2.77[/tex]

rounding to tenths place, r = 2.8 inches

Answer choice B is right

Answer: c.   [tex]4.9\ in.[/tex]

Step-by-step explanation:

The volume of cone is given by :-

[tex]V=\dfrac{1}{3}\pi r^2 h[/tex], where r is radius and h is height of the cone.

Given: Height : 7 in.

Volume : [tex]56.52\ in^3[/tex]

Then the volume of the cone will be :-

[tex]56.52=\dfrac{1}{3}(3.14) r^2(7)\\\\\Rightarrow\ r^2=\dfrac{56.52\times3}{7\cdot3.14}\\\\\Rightarrow\ r^2=24.22285714\\\\\Rightarrow\ r=4.921672189\approx4.9\ in.[/tex]

Hence, the radius of the cone =  [tex]4.9\ in.[/tex]