For this case we have a function of the form [tex]y = h (d)[/tex]. Where:
[tex]h (d) = \frac {4} {9} d + 6 \frac {2} {3}[/tex]
Rewriting the mixed number as a fraction:
[tex]h (d) = \frac {4} {9} d + \frac {3 * 6 + 2} {3}\\h (d) = \frac {4} {9} d + \frac {20} {3}[/tex]
Substituting [tex]d = 3[/tex]:
[tex]h (3) = \frac {4} {9} (3) + \frac {20} {3}\\h (3) = \frac {4} {3} + \frac {20} {3}\\h (3) = \frac {24} {3}\\h (3) = 8[/tex]
ANswer:
Option A