sin(x) = 1/2 when x is 30°, 150°, 210°, or 330° (unit circle).
With those angles, the cos(x) is ±√3/2 and the tan(x) is ±√3/3.
Answer:
[tex]cos(x)=\pm \frac{\sqrt3}{2}[/tex]
[tex]\tan(x)= \pm \frac{1}{\sqrt3}[/tex]
Step-by-step explanation:
We are given the following information in the question:
[tex]\sin(x) = \displaystyle\frac{1}{2}[/tex]
We use the trigonometry identity:
[tex]\sin^2(x) + cos^2(x) =1[/tex]
Putting the value, we get,
[tex]\bigg(\displaystyle\frac{1}{2}\bigg)^2 + \cos^2(x) = 1\\\\\cos^2(x) = \frac{3}{4}\\\\\cos(x)=\pm \frac{\sqrt3}{2}[/tex]
Formula:
[tex]\tan(x) = \displaystyle\frac{sin(x)}{cox(x)}\\\\tan(x) = \frac{\pm \frac{1}{2}}{\frac{\sqrt3}{2}} = \pm \frac{1}{\sqrt3}[/tex]