Respuesta :

Answer:

See attachment

Step-by-step explanation:

The given parametric equations are;

[tex]x=2t[/tex] and [tex]y=t+5[/tex], [tex]-2\le t\le 3[/tex].

We can graph this by plotting some few points within the given range or eliminate the parameter to identify the type of curve.

Plotting points;

When [tex]t=-2[/tex],

[tex]x=2(-2)=4[/tex] and [tex]y=-2+5=3[/tex]

This gives the point (-4,3).

When [tex]t=0[/tex]

[tex]x=2(0)=0[/tex] and [tex]y=0+5=5[/tex]

This gives the point (0,5).

When [tex]t=3[/tex]

[tex]x=2(3)=6[/tex] and [tex]y=3+5=8[/tex]

This gives the point (6,8).

We plot these points and draw a straight line through them.

Eliminating the parameter.

[tex]x=2t[/tex]

[tex]y=t+5[/tex]

Make t the subject in the second equation;

[tex]t=y-5[/tex]

Substitute into the first equation;

[tex]x=2(y-5)[/tex]

This implies that;

[tex]x=2y-10[/tex]

[tex]y=\frac{1}{2}x+5[/tex]

This is an equation of a straight line with slope [tex]\frac{1}{2}[/tex] and y-intercept 5 on the interval

[tex]-4\le x \le 6[/tex]

Ver imagen kudzordzifrancis

Answer:

The answer is in attachment

Step-by-step explanation:

First step finde a function t(x) ⇒ t=x/2;

Now we need to finde the limits of that function:

if t=-2 ⇒ x=-4 and t=3 ⇒ x=6. That means -4≤x≤6

Now replace on y(t) ⇒ y(x)= x/2+5, 4≤x≤6

Ver imagen muriyabi