Respuesta :

ANSWER

[tex]x = 6[/tex]

EXPLANATION

The given equation is

[tex] \sqrt{3x + 7} = x - 1[/tex]

We square both sides of the equation to obtain,

[tex](\sqrt{3x + 7} ) ^{2} =( x - 1)^{2} [/tex]

This implies that,

[tex]3x + 7 = {x}^{2} - 2x + 1[/tex]

Rewrite in standard quadratic equation form.

[tex] {x}^{2} - 2x - 3x+ 1 - 7 = 0[/tex]

[tex]{x}^{2} -5x - 6= 0[/tex]

Factor

[tex](x - 6)(x + 1) = 0[/tex]

This implies that,

[tex]x = 6 \: x = - 1[/tex]

We check for extraneous solution by substituting each x-value into the original equation.

When x=-1,

[tex]\sqrt{3( - 1)+ 7} = - 1- 1[/tex]

[tex]\sqrt{4} = - 2[/tex]

2=-2....False

Hence x=-1 is an extraneous solution.

When x=6,

[tex]\sqrt{3( 6)+ 7} = 6- 1[/tex]

[tex]\sqrt{25} = 5[/tex]

5=5 is True.

Hence x=6 is the only solution.