For the following question, find the value of the variable(s). If your answer is not an integer, leave it in simplest radical form. Please help!!

Answer:
option(D)
x= 30 , y = 10√3
Step-by-step explanation:
Given in the question, a right angle triangle whose
hypotenuse = 20√3
We will use pythagorus theorem and trigonometry identities to find the value of x and y
Formula to use
sin(30) = y / 20√3
y = sin(30) x 20√3
y = 10√3
(20√3)² = (10√3)² + x²
(20√3)² - (10√3)² = x²
x² = 900
x = √900
x = 30
so, the value of x = 30 and y = 10√3
Answer:
[tex]x=30,y=10\sqrt{3}[/tex]
Step-by-step explanation:
Recall the mnemonics SOH CAH TOA.
We use the cosine ratio to find the value of [tex]x[/tex].
[tex]\cos(30\degree)=\frac{Adjacent}{Hypotenuse}[/tex]
This implies that;
[tex]\cos(30\degree)=\frac{x}{20\sqrt{3}}[/tex]
[tex]\frac{\sqrt{3}}{2} =\frac{x}{20\sqrt{3}}[/tex]
Cross multiply to get;
[tex]2x=20\sqrt{3}\times \sqrt{3}[/tex]
[tex]2x=60[/tex]
[tex]x=30[/tex]
Using the sine ratio
[tex]\sin(30\degree)=\frac{y}{20\sqrt{3} }[/tex]
[tex]\frac{1}{2}=\frac{y}{20\sqrt{3} }[/tex]
Tis implies that;
[tex]y=\frac{1}{2} \times 20\sqrt{3}[/tex]
[tex]y=10\sqrt{3}[/tex]
The correct choice is D.