Respuesta :

Answer:

Step-by-step explanation:

The function to be analyzed is:

[tex]y = \frac{4}{x-1}+5[/tex]

This function has a vertical and a horizontal asymptote. The vertical asymptote is located where discontinuity exist. That is:

[tex]x = 1[/tex]

Besides, the horizontal asymptote coincides with the limit of function, which is:

[tex]\lim_{x \to \pm \infty} \left(\frac{4}{x-1} + 5\right)[/tex]

[tex]\lim_{x \to \infty} \frac{4}{x-1} + \lim_{x \to \infty} 5[/tex]

[tex]L = 0 + 5[/tex]

[tex]L = 5[/tex]

The horizontal asymptote is:

[tex]y = 5[/tex]

The function and the asymptotes are presented in the image attached below.

Ver imagen xero099