Respuesta :

Answer:

C. [tex]\lim_{x\rightarrow f(x)=2[/tex]

Step-by-step explanation:

Given problem is [tex]\lim_{x\rightarrow \frac{\pi}{4}}\frac{tan(x)-1}{x-\frac{\pi}{4}}[/tex].

Now we need to evaluate the given limit.

If we plug [tex]\x=\frac{\pi}{4}[/tex], into given problem then we will get 0/0 form which is an indeterminate form so we can apply L Hospitals rule

take derivative of numerator and denominator

[tex]\lim_{x\rightarrow \frac{\pi}{4}}\frac{tan(x)-1}{x-\frac{\pi}{4}}[/tex]

[tex]=\lim_{x\rightarrow \frac{\pi}{4}}\frac{sec^2(x)-0}{1-0}[/tex]

[tex]=\frac{sec^2(\frac{\pi}{4})-0}{1-0}[/tex]

[tex]=\frac{(\sqrt{2})^2}{1}[/tex]

[tex]=\frac{2}{1}[/tex]

=2

Hence choice C is correct.