Respuesta :

Answer:

Step-by-step explanation:

Answer:

The correct option is B.

Step-by-step explanation:

From the given figure it is clear that triangle LMN is a right angled triangle.

According to Pythagoras theorem: In a right angled triangle

[tex]hypotenuse^2=perpendicular^2+base^2[/tex]

In triangle LMN,

[tex]LN^2=LM^2+MN^2[/tex]

[tex](\sqrt{20})^2=x^2+(x-2)^2[/tex]

[tex]20=x^2+x^2-4x+4[/tex]

[tex]20=2x^2-4x+4[/tex]

Subtract 20 from both sides.

[tex]0=2x^2-4x+4-20[/tex]

[tex]0=2x^2-4x-16[/tex]

Taking out common factors.

[tex]0=2(x^2-2x-8)[/tex]

Splitting the middle term we get

[tex]0=2(x^2-4x+2x-8)[/tex]

[tex]0=2(x(x-4)+2(x-4))[/tex]

[tex]0=2(x-4)(x+2)[/tex]

Using zero product property we get

[tex]x-4=0\Rightarrow x=4[/tex]

[tex]x+2=0\Rightarrow x=-2[/tex]

The value of can not be negative because side of a triangle is always positive. So, the value of x is 4.

Therefore the correct option is B.