Respuesta :
Answer:
[tex]f^{-1}(x)=\dfrac{e^x}{3},\ x\in(-\infty,\infty),\ y>0[/tex]
Step-by-step explanation:
Consider the function [tex]f(x)=\ln 3x.[/tex] the domain of this function is x>0 and the range of this function is all real numbers. The inverse function has the domain all real numbers and the range y>0.
If
[tex]y=\ln 3x,[/tex]
then
[tex]3x=e^y,\\ \\x=\dfrac{e^{y}}{3}.[/tex]
Change x into y and y into x:
[tex]y=\dfrac{e^x}{3}.[/tex]
Thus, the inverse function is
[tex]f^{-1}(x)=\dfrac{e^x}{3}.[/tex]
ANSWER
[tex]{f}^{ - 1} (x) = \frac{ {e}^{x} }{3} [/tex]
EXPLANATION
The given logarithmic function is
[tex]f(x) = ln(3x) [/tex]
Let
[tex]y = ln(3x) [/tex]
Interchange x and y.
[tex]x = ln(3y) [/tex]
Solve for y.
[tex] {e}^{x} = {e}^{ ln(3y) } [/tex]
[tex] {e}^{x} = 3y[/tex]
Divide both sides by 3.
[tex] \frac{ {e}^{x} }{3} = y[/tex]
Therefore
[tex] {f}^{ - 1} (x) = \frac{ {e}^{x} }{3} [/tex]