Respuesta :

gmany

Answer:

[tex]\large\boxed{A=480\ m^2}[/tex]

Step-by-step explanation:

The formula of an area of a kite:

[tex]A=\dfrac{d_1d_2}{2}[/tex]

d₁, d₂ - diagonal

Look at the picture.

Use the Pythagorean theorem.

[tex]x^2+5^2=13^2[/tex]

[tex]x^2+25=169[/tex]               subtract 25 from both sides

[tex]x^2=144\to x=\sqrt{144}\\\\x=12\ m[/tex]

Therefore d₁ = (2)(12 m) = 24 m.

[tex]y^2+12^2=37^2[/tex]

[tex]y^2+144=1369[/tex]         subtract 144 from both sides

[tex]y^2=1225\to y=\sqrt{1225}\\\\y=35\ m[/tex]

Therefore d₂ = 5 + 35 = 40 m.

Substitute:

[tex]A=\dfrac{(24)(40)}{2}=(24)(20)=480\ m^2[/tex]

Ver imagen gmany