Respuesta :

Answer:

34°

Step-by-step explanation:

The angle made when a tangent and a radius intersect=90°

Therefore angle OQP =90°

The triangle made by the two radii is isosceles ( base angles are equal) hence angle POQ=180-2(62)

=56°

The right triangle  OPQ can hence be solved as follows

angle POQ=56°

angle OQP=90°

angle x=180-(56+90)=34° as all the interior angles of any triangle add up to 180°